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The present paper concerns some problems on the flow of an ideal fluld acted
upon by surface tension forces: the possibllity of the waves degenerating
into solitary waves, the existence of solitary waves of the trough type, the
existence of axisymmetrical wave-shaped Jets, and the possibility of loss of
stabllity by a Jet due to the action of surface tension forces. The study
1s)carried out within the framework of narrow strip asymptotics {see {1 and
2.

1. Long waves in a fluid acted upon by surface tension foroes., 1°. The
problem of determining steady-state waves on the surface of a heavy fluld
acted upon by surface tension forces can be reduced to finding the function
¥ harmonic in the strip 0 < y < Sf(x) (Fig.1) and the function s(x) from

the condltions v=1 for y=1/{x), Pp=0 for y =0 (1~1)

‘pxz + ‘by2 + Z’Vf '"TK =C for ¥ =1(z) i (1-2)
Problem (1.1),(1.2) is put in dimensionless form. The depth h of the
fluid at a point whose position willl be indicated below and the flow rate ¢
have been chosen as the characteristic parameters. In Expression (1.2) the
dimensionless parameter v , the mean curvature X , and the dimensionless
parameter vy characterizing the action of caplllary forces are given by the
following Formulasg

T~ N B _ gh I AN
y=flx. V=G 7, K S
sk 4a (V— Q) (1.3)
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Fig. 1 T= 0 T m

where V 18 the characteristic velocity and a 18 the coefficient of sur~
face tension.

=h

2°. The function ¢ harmonic in the strip O < y < f(x) , and its deriv~
atives may be written as (see [1], p.184)
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Since the boundary y = f{x) 1s not known in advance, 1t 1s necessary that
we equip ourselves with some prior estimates of the derivatives of the func-
tion y = f{x) (we have in mind the study of long waves and the conditions
of thelr degeneration into a solitary wave). It is therefore natural to
adopt the limitations set forth by Lavrent'ev [1]

'=0(@Eh), =0 [ =0(E% g (1.5)
which are valid for solitary waves in an ideal fluid,

Under conditions (1.5) and (1.%) we have

P an asymptotlc representation for the velocity
7 modulus on the curve y = fi{x) ,
; N\ (0 + v Jy=jn) = (1.6)
i 2 g
A =[t+ 5] +0En
pot yob .
i } 7 : | Discarding terms of the order
‘~”“~\§ ! ’ : ” we can write Equation (3.2) as ()(e%)’
gﬂ__,,// ﬁzzzgggz@ ' 5 3 3 (1.7)
3 : =g +ar 45— 2er =0
Fig. 2 Equation {1.7) has a first integral, and

1ts phasé plane can be investigated easily.
It is that portion of 1t on which conditions (1.5) are fulfilled, however,
that 1s germane to the discussion below. These conditlons are necessarily
fulfilled for J/ = 1 . It 1s therefore possible to obtain the same quali-~
tative results without restoring to cumbersome computation by setting
J = 1+ n and retaining the first few terms of the expansions in (1.7).
Limiting ourselves to terms of the order o0{n?), we reduce {1.7) to the form

(L — ) v + An + Brf =D (1.8)
A=3v2+B)+3,B—1)—3,C(1+B)

B=3v(1+28+8%) 4%, (1 —B+B)—*LC B+ (1.9)
D =34C—3v—%, B=3%y/(1~37)

To simplify notations, we replace (¢ by the new constant §: (= 2y +146.
Formulas {1.9) then become

A=3(v—1)—=31+B)
B=3v+%+3(v—1)B—2,08(1—B), D=%h8  (110)
Equation (1.8) admits of the first integral
Yol —3l7) 02 =F + Dn—1/3 An* — /3 By’ = P (n) (1.11)

where F 1s & new constant which we can assume to be zero. This is equlva~
lent to saying that instead of a linear dimension we choose the depth of
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fluld at the peak of the hump or at the trough of the wave, The value nm=0
then corresponds to n’s= 0 . Thus, the behavior of the phase curves is
determined by the three parameters v , § and vy .

3°. First let us consider the case where § >0, v <%y anda B > 0.
The latter condition is fulfilled, for example, if vy 18 close to unity and
5 1s small. Plg.2 shows the curves P(n) and the phase plane of Equation
(1.8) for this case. The curve branches in the left half-plane have no phys-
ical meaning, since they describe the unbounded solutions of Equation (1.8).
The branches lying in the right half-plane describe perlodic solutions whose
amplitude is all the smaller, the smaller the value of & ., Thus, when &>0,
waves propagate along the surface whose length )\ 1s given by the quadrature

g A=V32 dn (1.12)
n V (D0 = A — s BY) (1 — %7)

in which the integral extends over the entire phase
trajectory. From {1.12) we see that 1lim A = = for
§ -0, If v>1 {(i.e. if the velocity of propaga-
tion of the wave relative to the stationary fluid
V< }féﬁﬁ then for & = O the phase dlagram of the
flow 1s as shown in Fig.3.

N

Thus, the periodic solution in this case degene=~
Fig. 3 rates to the point 7 = n’= 0, 1i.e. the flow degene~
rates into a plane~parallel stream. An entirely different situation obtains
when v < 1 . The phase diagram of flow in this case is shown in Pig.%. We
see that as X -« » the maximum elevation {"amplitude™) u* does not tend to
zero. The free surface in this case constitutes a solitary wave.

’P Thus, if v> 1, then as A - » the waves which
\\\ o propggate with a given velocity (v 1s fixed) degene~
rate to a uniform stream. The amplitude of these waves
n*~ 0 , they were studied by Litman [3 for vy = 0O .
If vw<1, then 1imn®*>0 as A ~ = , and the 1limit~
ing solution constitutes a solitary wave which has the
least amplitude n*(y) of all waves propagating with
a given velocity; furthermore, the amplitude of the
solitary wave tends to zero as vy - 1 . These waves
have been atudied by Kortweg and de Vries [4 ; the
corresponding exlstence theorem has been proved by
Sekerzh-Zenkovich [5]. The value y = 1 1is bifurca~
tional. For v > 1 there exists a unique form of moction of the infinitely
long wave, to wit, a uniform stream., The two limiting forms (a uniform
stream and a solitary wave) are realized with v < 1 . The waves under
investigation here are similar to ordinary gravitational (conoid) waves into
which they evolve as y ~ O . Cases of such waves can be easily studled by
analytic methods. For \kiéi the wave motions can be studied by quasilinear
methods {the Liapunov-Poincaré or Krylov-Bogoliubov methods), since even in

A
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the first approximation, Equaticn (1.8) already admits of the perlodic solu-
tion

n=nreos [($La) 0] @ cons (1.13)

If v < 1, then the equation of the first approximation does not contain
periodic solutions, so that such waves cannot be studied in linear approxi-
mation (*). In this case the solution can be obtained 1n elliptic functions.
The solution becomes especially simple for 6 = 0 ., It 1is easy to verify
that in this case Equation (1.8) has the solution

= 314] " 1.14
" 2Bcost? 1/2 VWI cosh2lfy V Aw ( )

which tends to zero as |x|-= .

Hence we see that the amplitude of the solitary wave

Tl* 3(1—w)
2v+4+4—3(1—v)B

increases with increasing surface tension.

4°, It 1s easy to verify that the case & < O has no physical meaning.

In fact, let us conslder the asymptotic theory assuming in advance that
the solution satlsfies conditions (1.5). It follows from (1.13) and (1.1%)
that the above prior estimates are valid if y 1s close to unity. Thus, as
¢ we must adopt the quantity ]/11 — vl, and the above investigatilon 1is
meaningful only in the neighborhoéd of the point v = 1 .,

5°. We have already considered the case of vy restricted to small
values. The surface tension forces merely alter the wave parameters but do
not produce new forms of motion. Let us assume now that y > ?/, . Upon
passage of the parameter y through the bifurcaetional value vy = 2/,, there
occurs a change in the slgns of the coefficients 4, P and D in Equation
(1.8). Investigating the phase as was done above, we arrive at the follow-
ing results.

a) If y>32/;, and v< 1, then as X —~ » the waves degenerate into a
uniform stream, 1.e, the wave amplitude vanishes as \ - = .,

b) If y>?/, and y> 1, thenas A - =
the amplitude has a finite limit, and this limit-
2 ing flow constitutes a solitary wave. These waves

4 are trough- and not hump-shaped, however,

Thus, 1f the parameters y and + belong to

3 and 4 (Fig.5), then as A - = there exists
! v a unique limiting form of motion, that 1s a uni-
Pig. 5 form stream, If the parameters y and + Dbelong

') In strict (nonasymptotic) formulation the wave problem can be reduced
to an operator equation with an operator whose Fréchet derivative vanishes
for vw1 and 8 = O .
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to the regions 1 and 2, then as X - » there exlst two limiting forms of
motion: 1in addition to a uniform stream there i1s a motion wherein the free
surface 1s wave-shaped, the solltary wave having the shape of a hump for
parameter values belonging to region 1 and a trough shape for region 2.

Note . The above asymptotic analysls 1s meaningful only 1f
(A ]1— 3y |

is a small quantity. We have considered the case when the smallness of this
quantity is assured by the closeness of y to 1 and & to zero. However,
this quantity can be small even if the denominator is large. This yields a
new type of fluid motion which can be studled by asymptotic methods for any
value of v . VFor example, let vy = 0, 1.e. let us consider purely capil-
lary waves.

A 28
1=y~ = 3(—s1p

Equation (1.8) admits of a solution of the solitary wave type provided
that D = 0, 1.,e. that & = 0 . But in thls instance 4 = 0 as well, al-
though here (y > 2/, ) Equation (1.9) simply has no bounded solutions with
the exception of the trivial, i.e. purely caplllary flows do not contain a

Then

solitary wave.

2. Axisymmetrioal jJets. 1°. Let us consider an axisymmetrical Jet acted
upon by surface tension forces; the flow 1s assumed to be steady. The pur-
pose of our investigation 1s to study the possible forms of the Jet. The
equation of the jet boundary will be specified in the form 7 = f(2) . The
Jet flow 1is assumed to be potential. Inasmuch as the jet is assumed axisym-
metrical, the problem may be reduced to finding the stream function (7, z)

satisfying Equation tp" +'l|Jzz _ T—I\Pr =0 (2.1)
and the function s(z) in accordance with the following conditions:
V=1 tor r=f(z)y V=0 tor r=0 (2.2)
/? ["~l’r2 + "~|712] —27K=C for r=f(z) (23)

Condition (2.2) is a kinematic condition (in this case the condition of
a constant flow rate), and (2.3) is a dynamic condition. The problem is
formulated in terms of dimensionless variables. As the characteristic para-
meters we have chosen the radius & of the Jet at some cross section (whose
position will be established below) and the value ¢ of the stream function
on the Jet surface. (¢ 1s the constant energy, which is a functional, and
X 1s the mean curvature of the jJet surface,

_ 471 1" A I
K__2_<fcos9+ )_7[ . ] (24

(1 4% (1 + oyt
where y 1s a dimensionless parameter characterlzing the actlion of surface
tension forces, a _ aR3 - Q o
T=mEr o T= @ =) (2.9)

Thus we see that the role of surface tension is in direct proportion to
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the coefficient of surface tension g and inversely proportional to the jet
thickness and characteristic velocity of the fluid particles.

2°. The function ¢ satisfying (2.1) within the strip 0 < r < r(z),
which becomes unity on the boundary r = f(z) and zero on the straight line
r = 0, has the following asymptotic representation (see [1], p.185):

2 32— f"f 2 9 p
_%+__4,j#,2<1_%)+... (2.6)
and similarly
1oy _2f _ 1oy 32—y 2y, )
v, = T oz 78 + cey U= 7_57 [/z + 2f2 ( j? )+ J (27)

furthermore,

e

4rzj

e+ P 28

Since the boundary is unknown, we must make use of some prior estimates
of 1t. With the same aims as those set forth in the preceding Section, we
once agaln employ the estimates of Lavrent'ev,

f, — 0 (8‘/’), ]w — 0 (82) ete. (29)
The validiﬁy of these estimates and the meaning of the parameter e will

be established below. Making use of estimates (2.9), we rewrite Formulas
(2.7) and (2.8) in the form

v o (1= )0t
(0 + 0.8y = 7o [+ T 17|40 (&%)

In accordance with estimates (2.9), we transform (2.4),
K=Y"+71)+0E) (2.11)

Substituting (2.10) and (2.11) into dynamic condition (2.3), we arrive at
an ordinary second-order differentlal equation in the function [ (i.e. the

free bomdsV) @) f 4 4 — P — O =0 (2.12)

We note that Equation (2.12) admits of a first integral whose properties
can easily be investigated by phase plane methods.

(2.10)

For our purposes it is sufficient to consider the quadratic approximation.
To this end we set S = 1 + n and retain terms on the order of 0(n?) in
(2.12).

Equation (2.12) then becomes
2—mn"+4n+ By + By =D (2.13)
where the constants 4, 7 and D are given by Formulas
=—pBD—4—2y—3C, D=yv+C—4
=—D—20—B(By —4C) — @D @E=31/(2—") (2.14)
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3°. In the case of a uniform stream and solitary wave we have n'= 0
and n = 0 as |z| ~® ., Hence, in this case D = 0 and C = 4 —y . Let
us consider flows closely resembling the latter, We set ¢ = 4 —y + 6 and
assume D = § to be small. In this case

A=7—16—5(3+p)

Since the theory belng presented is valid for small 4 , we set y=16+4,
whereupon B = — ¥/, 4 3/, L O (A?) ; moreover,

A =3[0+ A+ O(max (8%, A?)), B =13%,+0(max(|A[,|8])

Thus, for small A and & we have b > 0, and the sign of 4 1s deter-
mined by the relationship between A and 6§ . Noting furthermore that
2 —y < 0 for small A and reasoning as in the preceding Section, we can
easlily obtain the following results.

a) If 6< 0, i.e. if the constant energy ¢ < — 12 + A , then Equation
(2.13) has no bounded solutions., Thls means that a Jet extending to infinity
to either side expands wilthout 1limit in at least one of the directions.

b) If § >0, then the Equation (2.13) admits of solutions bounded on the
entire straight line — o < 2 < + = , If § 5=(, then these solutions con-
stitute nonlinear waves whose amplitudes decrease along with & .

¢) The character of limiting solutions as A - = (i.e, as & - 0) depends
to a marked extent on A . If A > O (i.e. y > 16), then

1im2—fT<O tor 80

and the amplitude of the limiting solution is not equal to zero. The limit-
ing solution constitutes a solitary wave of the trough type. If A< O,
then the limiting solution constitutes a uniform stream.

3. DNonstationary prodlems of jet theory. 1°. Let us construct the equa-
tions of long axisymmetrical waves propagating along a cylindrical Jet of an
ideal welghtless fluld acted upon by capillarity forces. The velocity poten-
tial ¢ and the shape of the free surface " = f(z, t) is defined as the
solution of the following problem (Fig.6):

0 op 2 99\ o9 _
ar (rae) Tz (P o) =0 Ve=G5=0 e r=0 6-4)
8 3 af @
= e o= (32
d 170p\2 | 1 [0g)\2
a—(tp“—l' -2— <a—(f) ~+ 7(%) —27K= C for r=1f (3.3)

The dimensionless variables are lintroduced as 1n the preceding Section.
2°. Pirst let us consider an auxiliary problem on the determination
of the velocity potential which satisfies Equation (3.1), condition (3.2),
and condition
P (fa z, t) = a (Z, t) (3'4)

Using ¢ to denote a small parameter, we carry out the substitution of
variable z = £/¢ in (3.1).

Equation (3.1) then becomes
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d ¢ d g ,
: alrar)+eara)=0 69

el We shall attempt to find a solution of (3.5)
< } 2 in the form of a series
i i Y
v ® = o T ey T ... (3.6)
FrFTE) where o, satisfy Equations
8 [ ¢ 3 ( op 92,
Filg. 6 3,7("“57)3: ) “g(rg;")zwrgé’g‘,... (3.7

The functions o, satisfy the following bound~
ary conditlions:

89;/0r =0 for r==0, Po=2a for = f, P =0 (>0 forir = §

Solving this sequence of boundary-value problems and converting back to
the varlable » , we obtain the following expression for & 1n terms of its
boundary values:

§~alzt)+FYa, (P — ) + .. (3.8)

In order for (3.9) to have meaning, it 1s necessary and sufficlent that
the derivatives of the potential a and of the function [ decrease suf-
ficiently rapidly as their order increases. This condition is fulfilled if
the waves are long enough. Using representation (3.8) for the potential, we
can transform the kinematic and dynasmic relations ?3.2) and {3.3), )

af i 8 1 1i
T Z‘azzf‘""‘fzaz‘Fnu"é%+"§322_T<T+fzz)+~“:c (3.9}

By limiting ourselves to a specific number of terms in Equations (3.9),
we obtain equations giving an approximate description of the propagation of
axisymmetrical nonlinear waves along the Jet,

3°. Equations {3.9) can be used to investigate various phenomena arising
in jet theory. Specifically, it is possible to 1nveitigate the stablility of
Jets with respect to long perturbations. Plateau [6] was apparently the
first to note that surface tension forces may be the cauge of Jet instabllity,
A similar study of this matter was performed by Reley [7], who showed that
the cylindrical shape of & jet is unstable with respect to sufficlently long
perturbations. This fact follows from system (3.9).

We set G = V,+ 2 and 7 =1+ n and linearize system (3.9), retaining
in it 8ll derivatives up to the second order,

My = Y, — VN, b, + 26V —p(—m +1,,)=0 (3.10)
Let us attempt to find a soclution of the running wave type. To do this
e eet P T (3.41)
For determining 4 and B we have Equations
A+ Vo) +Ye'B =0, Ay (1 + 0¥ + B+ 2ieV) =0 (3.12)

We note that if y = 0 , i.e, if there 18 no surface tension, the second
squation of (3.12) immediately ylelds . = — 2wV , i.e. the jet is in neu-
tral equilibrium in the absence of surface tension forces. If surface ten-
sion forces are added, the jet becomes unstable. In fact, the characteristic
equation of system (3.12) 1s of the form

p? + 3ioVp + A (A = —10% (1 + 0% L 0) (3.13)

This immediately implies that one of the roots of {3.1%) has a positive
real part. Thus, & thin jet 1s disrupted by surface tension forces. Inte-
grating system {3.9), we can trace the process of disintegration of the Jet



Properties of flow under the action of surface tension 1205

into drops. The above theory is vallid only for long perturbations. The
trivial form of a Jet of weightless fluld acted upon by surface tension for-
ces is therefore unstable. However, as we see from the preceding Section,
other forms of axisymmetrical Jjets are possible. In particular, these may
be wave-shaped. This naturally leads us to ask whether stable flows might
exlst among the possible forms of Jet flows.

In the preparation of this paper the author used to advantage a number of
comments by L.N, Sretenskii and F.L. Chernous'ko, to whom he 1s sincerely
grateful.
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