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The present paper concerns some problems on the flow of an Ideal fluid acted 
upon by surface tension forces: the possibility of the waves degenerating 
into solitary waves, the existence of solitary waves of the trough type, the 
existence of axlsymmetrlcal wave-shaped jets, and the possibility of loss of 
stability by a Jet due to the action of surface tenslon forces. The study 
is carried out within the framework of narrow strip asymptotic8 (see [l and 
2 1. 

1. Low waver in & fluid eotod upon by @urfaoo kxWon forooa. IO. The 

problem of determining steady-state waves on the surface of a heavy fluid 

acted upon by surface tension forces can be reduced to finding the function 

$ harmonic in the strip 0 -C y < J'(x) (Fig.1) and the function y(x) from 

the conditions $=I for y = f (ii?), 3, =o for y = 0 w 

*.x8 + $2 + 2vl - 7K = c fO? y = f (3) (1.2) 
Problem (1.1),(1.2) is put in dimensionless form. The depth h of the 

fluid at a point whose position will. be Indicated below and the flow rate Q 

have been chosen aa the characteristic parameters. In Expression (1.2) the 

dimensionless parameter v , the mean curvature X , and the dimensionless 

parameter y characterizing the action of capillary forces are given by the 

following Formulas.! 

-L g 

Fig. 1 

where V Is the characteristic velocity and a Is the coefficient of sur- 

face tension. 

2O. The function ) harmonic in the strip 0 e y i: j)(x) , and Its derlv- 

atives may be written as (see El], p.184) 
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Since the boundary y m Y(r) is not known in advance, it is necessary that 

we equip ourselves with some prior estimates of the derivatives of the func- 

tion y - I(r) (we have in mind the study of long waves and the conditions 

of their degeneration into a solitary wave). It is therefore natural to 
adopt the limitations set,forth by Lavrent'ev [l] 

which are valid for solitary waves in an Ideal fluid. 

Under conditions (1.5) and (1.4) we have 

an asymptotic representation for the velocity 

modulus on the curve Y = J(X) , 

(14 

Discarding terms of the order 

we can write Equation (1.2) as 0 (a%) , 

Pig. 2 Equation (1.7) has a first integral, and 

its phask plane can be investigated easily. 

It is that portion of it on which conditions (1.5) are fulfilled, however, 

that is germane to the discussion below. These conditions are necessarily 

fulfilled for f - 1 . It is therefore possible to obtain the same quali- 

tatlve results without restoring to cumbersome computation by setting 

f I 1 + n and retaining the first few terms of the expansions in (1.7). 

Limiting ourselves to terms of the order ofq'f, we reduce (1.7) to the form 

(1 - T2y) ?f -j- .Avj + Bvf = D P-8) 
A=3vt2+p~+3/a(P--1)-91aC(1;tF3) 
B = 3y (1 + 2P + P”) + s/!d (1 - P + P”) - 3/2 c (P + P) (9 
D ==~JdL--33v--S/8 (P = % 7 / u - Y2 r) 

To simplify notations, we replace C by the new constant 6: C= 2y+1+6. 

Formulas (1.9) then become 

A=~(Y--1) - 3ia 8 (1 + P) 
B = 3Y -I- 3/a + 3 (Y - 1) p - 9/fL sp (I - P), D -=1 ya 8 

Equation (1.8) admits of the first integral 

"1s (I- 3/s 7) r('s = F + Dq - ‘la Atf - l/s a!?@+ zs P (q) 

(1.10) 

(1.11) 

where F is a new constant which we can assume to be zero. This is equiva- 

lent to saying that instead of a linear dimension we choose the depth of 
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fluid at the peak of the hump or at the trough of the wave. The value n-0 

then corresponds to n'- 0 . Thus, the behavior of the phase curves is 

determined by the three parameters v , 6 and y . 

3” - First let us consider the case where 6 > 0, y < 2/3 and B > 0. 

The latter condition is fulfilled, for example, if v la close to unity and 

b Is small. Fig.2 shows the curves P(n) and the phase plane of Equation 

(1.8) for this case. The curve branches in the left half-plane have no phys- 

ical meaning, since they describe the unbounded solutions of Equation (1.8). 

The branches lying in the right half-plane describe periodic solutions whose 

amplitude is all the smaller, the smaller the value of b . Thus, when 6~0, 

waves propagate along the surface whose length )i is given by the quadrature 

-AL& h-jci 
l/(Drl -l/a Aqa - :BV+) (1 - %r) 

(1.12) 

I 
I ’ \ in which the integral extends over the entire phase 

I 4’ 

trajectory. Prom (1.12) we see that lim X = = for 

~ 

b-0. 

I 

If v > 1 (i.e. If the velocity of prOpag8- 

tlon of the wave relative to the stationary fluid 
I - 

r v < vg+ then for b - 0 the phase diagram of the 

flow Is as shown In Flg.3. 

!I’hus, the periodic solution In this case degene- 
Pig. 3 rates to the point n - q'= 0 , I.e. the flow degene- 

rates into a plane-parallel stream. An entirely different situation obtains 

when v c 1 . The phase diagram of flow in this case Is shown in Fig.'). We 

see that as X - = the maximum elevation f"amplitudeN) $ does not tend to 

zero. The free surface In this case constitutes a solitary wave. 

* 

Thus, if v > 1 , then as h - m the waves which 

propagate with a given velocity (V is fixed) degene- 

rl rate to a uniform stream. The amplltu& of these waves 
I 

rl*- 0 , they were studied by Lltman [3 for y = 0 . 
i 
t 

1' ; 
If v<l, 

I 
I 

+- 

then flm n*> 0 as A - - , and the limit- 

ing solution conetltutes a solitary wave which has the 

least amplitude n*(v) of all waves propagating with 

'1 
a given velocity; furthermore, the amplitude of the 

solitary wave tends to zero as v + 1 . These waves 

have been studied by Kortweg and de Vrles [4 ; the 

Pig. 4 
corresponding existence theorem has been proved by 

Sekersh-Zenkovich [5]. The value v I 1 is bifurca- 

tiona1. For v > 1 there exists a unique form of motion of the infinitely 

long wave, to wit, a uniform stream. The two limiting forms (a uniform 

stream and a solitary wave) are realized with v < 1 . Tlhe waves under 
Investigation here are similar to ordinary gravitational (conold) waves Into 

which they evolve as y - 0 . Cases of such waves can be easily studied by 

analytic methods. the wave motions can be atudied by quaslllnear 

methods (the P or Krylov-Bogoliubov methods), since even in 
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the first approximation, Equation (1.8) already 

tlon 

admits of the periodic solu- 

(0~ ronst) (1.13) 

If v<l, then the equation of the first approximation does not contain 

periodic solutions, so that such waves cannot be studied In linear approxl- 

matlon (*). In this case the solution can be obtained in elliptic functions. 

The solution becomes especially simple for b - 0 . It 13 easy to verify 

that In this case Equation (1.8) has the solution 

(1.14) 

which tends to zero as (xl+- . 

Hence we see that the amplitude of the solitary wave 

3(1-Y) 
~*=,,+,_3(1-Y)3 

Increases with Increasing surface tension. 

QO. It Is easy to verify that the case b i 0 has no physical meaning. 

In fact, let us consider the asymptotic theory assuming In advance that 

the solution satisfies conditions (1.5). It follows from (1.13) and (1.14) 

that the above prior estimates are valid If v is close to unity. Thus, as 

c we must adopt the quantity 1/11 - VI, and the above Investigation is 

meaningful only In the neighborhood of the point v = 1 . 

5". We have already considered the case of y restricted to small 

values. The surface tension forces merely alter the wave parameters but do 

not produce new forms of motion. Let us assume now that y S+ "/, . Upon 

passage of the parameter y through the blfurcatlonal value y - a/3, there 

occurs a change In the signs of the coefficients A, B and D in Equation 

(1.8). Investigating the phase as was done above, we arrive at the follow- 

ing results. 

a) If y > a/S and v < 1 , then as A - = the waves degenerate Into a 

uniform stream, I.e. the wave amplitude vanishes as X - m . 

Y 
b) If y z= "/, and v > 1 , then as A - - 

z/s 
A 

i 

the amplitude has a finite limit, and this llmit- 

ing flow constitutes a solitary wave. These waves 
--------_ 

(4 are trough- and not hump-shaped, however. 

I 
I 

Thus, If the parameters y and v belong to 

3 and 4 (Flg.5), then as X + 0 there exists 

1 v a unique limiting form of motion, that Is a unl- 

Fig. 5 form stream. If the parameters y and v belong 

l ) III strict (nonasymptotlc) formulation the wave problem can be reduced 
to an operator equation with an operator whose Frkhet derivative vanishes 
for v-1 and b-0. 
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to the regions 1 and 2, then as X 4 m there exist two limltlng forms of 

motion: in addition to a uniform stream there Is a motion whereln the free 

surface Is wave-shaped, the solitary wave having the shape of a hump for 

parameter values belonging to region 1 and a trough shape for region 2. 

Note . The above asymfitotlc analysis Is meaningful only If 

/A I.11 - 3/2y I-1 

is a small quantity. We have considered the case when the smallness of this 

quantity Is assured by the closeness of v to 1 and b to zero. However, 

this quantity can be small even If the denominator Is large. This yields a 

new type of fluid motion which can be studied by asymptotic methods for any 

value of v . For example, let v - 0 , I.e. let us consider purely capll- 

lary waves. 

Then 
A 26 

1_s/z=- 3 (1 - 2/a r)2 

Equation (1.8) admits of a solution of the solitary wave type provided 

that D = 0 , I.e. that b = 0 . But In this Instance A - 0 as well, al- 

though here (v > 2/s) Equation (1.9) simply has no bounded solutions with 

the exception of the trivial, I.e. purely capillary flows do not contain a 

solitary wave. 

2. hl8~trloal jrtr. lo. Let us consider an axlsymmetrlcal Jet acted 

upon by surface tension forces; the flow Is assumed to be steady. The pur- 

pose of our Investigation Is to study the possible forms of the jet. The 

equation of the Jet boundary will be specified in the form r-f(r). The 

Jet flow Is assumed to be potential. Inasmuch as the jet Is assumed axlsym- 

metrlcal,the problem may be reduced to finding the stream function $(F, a) 

satisfying Equation 
$P +gzz - r-'$r = 0 (2.1) 

and the function j(z) In accordance with the following conditions: 

$I,=1 for r = f(z), ljl=o for r=O (2.2) 

f-” [q.q + $z2] - 2TK = c for r = f (2) (2.3) 
Condition (2.2) Is a kinematic condition (In this case the condition of 

a constant flow rate), and (2.3) Is a dynamic condition. The problem la 

formulated In terms of dimensionless variables. As the characteristic para- 

meters we have chosen the radius R of the Jet at some cross section (whose 

position will be established below) and the value Q of the stream function 

on the Jet surface. c Is the constant energy, which Is a functional, and 

K Is the mean curvature of the Jet surface, 

K = ; (&I + (1 Jff2)% = T 1 [ 1 (1 +f2)“’ + f" 
f (1 + p)” 3 (2.4) 

where y Is a dimensionless parameter characterlzlng the action of surface 

tension forces, 

Y=&, OI r=$ (v=&) (2.5) 

Thus we see that the role of surface tension Is In direct proportion to 
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the coefficient of surface tension c and Inversely proportional to the Jet 

thickness and characteristic velocity of the fluid particles. 

2*. The function * satisfying (2.1) within the strip 0 < r < J'(s), 
which becomes unity on the boundary r - j(z) and zero on the straight line 

r-0, has the following asymptotic representation (see [II, p.185): 

* -2 
;a + 3P-$ f"i,2 (1 _ $) + . . . (2.6) 

and similarly 

+3’P&f”f(l - y)+ . . .] (2.7) 

furthermore, 

vr2 + v z2 = + ($” + $2) - ‘F + + + ‘f” ; 2ff” (I _ ‘$) + . . . (2.8) 

Since the boundary Is unknown, we must make use of some prior estimates 

of it. With the same alms as those set forth In the preceding Section, we 

once again employ the estimates of Lavrent'ev, 

f' = 0(&*/z), f" = 0 (Ea) etc. (2.9) 

The validity of these estimates and the meaning of the parameter E will 

be established below. Making use of estimates (2.9), we rewrite Formulas 

(2.7) and (2.8) In the form 

11) = $- - *$ ra (I- g, + 0 (&Y*) 

(ur2 + Q),=f = +- [ 1 + ; ntr] + 0 (ES/Z) 
(2.10) 

In accordance with estimates (2.9), we transform (2.10, 

K = V2 (f-l + f") + 0 (Es> (2.11) 

Substituting (2.10) and (2.11)Into dynamic condition (2.3), we arrive at 

an ordinary second-order differential equation in the function Y (i.e. the 

free boundary), 
(2 - rf") f" + 4f-1 - yf2 - Cf3 = 0 (2.12) 

We note that Equation (2.12) admits of a first Integral whose properties 

can easily be Investigated by phase plane methods. 

For our purposes It 1s sufficient to consider the quadratic approximation. 

To this end we set 3 = 1 + n and retain terms on the order of O(qa) In 

(2.12). 

Equation (2.12) then becomes 

(2 - Y)$'+ATJ+B~+B~~~=D (2.13) 

where the constants A, B and D are given by Formulas 

A=--D-4-2y-3C, D=y+C-4 

B =-D-2C-~(3~-4C)-~2D (3=33/(2-d) (2.14) 
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3". In the case of a uniform stream and solitary wave we have n"- 0 

and n - 0 as (a( - m . Hence, In this case D - 0 and C-4-y. Let 

us consider flows closely resembling the latter. We set C-4-v + b and 

assume D = 6 to be small. In this case 

A =y-16-4(3+~) 

Since the theory being presented is valid for small A , we set y -16+~, 

whereupon $ = - 24/, + s/s8 f 0 (A") ; moreover, 

A = 3/76 + A + 0 (max(a2, Aa)), B = 13a/7 + 0 (max (I A 1, 18 I)) 

Thus, for small A and b we have b > 0 , and the sign of A is deter- 

mined by the relationship between A and b. Noting furthermore that 

2 - y < 0 for small A and reasoning as In the preceding Section, we can 

easily obtain the following results. 

a) If 6<0, i.e. If the constant energy C < - 12 + A , then Equation 
(2.13) has no bounded solutions. This means that a Jet extending to Infinity 

to either side expands without limit In at least one of the directions. 

b) If 6 > 0, then the Equation (2.13) admits of solutions bounded on the 

entire straight line -.a<s<+m. If 6 #O, then these solutions con- 

stitute nonlinear waves whose amplitudes decrease along with b . 

c) The character of limiting solutions as X + 0~ (I.e. as 6 4 0) depends 

to a marked extent on A . If A > 0 (I.e. v > 16), then 

lim f$<o for 6-O 

and the amplitude of the limiting solution Is not equal to zero. The llmit- 

lng solution constitutes a 'solitary wave of the trough type. If A<O, 

then the llmltlng solution constitutes a uniform stream. 

3. Honrbatloamy prob1.m of jot thoor7. lo. Let ua construct the equa- 
tions of long axisymmetrlcal waves propagating along a cylindrical Jet of an 
Ideal weightless fluid acted upon by caplllarity forces. The velocity poten- 
tial cp and the shape of the free surface 
solution of the following problem (~ig.6): 

r - /(z, t) is defined as the 

;(+)+-&(rg)=o, v,+=o f0t r=O 

89 acp af acp ___-- 
at- ar a2 a2 for r = f 

(3-i) 

(3.2) 

(3.3) 

The dimensionless variables are Introduced as In the preceding Section. 

of the2i;loclty potential which satisfies Equation (3.1), condition (3.2), 
First let us consider an auxiliary problem on the determination 

and condition 
‘p (f, z, t) = 0 (5 t) (3.4) 

using e to denote a small parameter, 
variable = - r/e In (3.1). 

we carry out the substitution of 

Equation (3.1) then becomes 
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Fig. 6 

We shall attempt to find a solution of (3.5) 
in the form of a series 

v =: ‘PO -i &$‘I i- ,.I (3.6) 

where q+ satisfy Equations 

The functions eI satisfy the following bound- 
ary conditions: 

Solving this sequence of boundary-value problems and converting back to 
the variable r , we obtain the following expression for 8 in terms of its 
boundary values : 

rp - a (2, tf + 1/4a,,(f2 - P) + . . . (3.8) 

In order for (3.9) to have meaning, It 1s necessary and sufficient that 
the derivatives of the potential a and of the function I decrease suf- 
ficiently rapidly as their order lncreaees. This condition 1s fulfilled if 
the waves are long enough. Wing repreaentatlon ( .8) for the potential, we 
can transform the kinematic and dynamic relations 7 3.2) and (3.3), 

By limiting ourselves to a specific number of terms in Equations (3.9), 
we obtain equations giving an approximate deaarlptlon of the propagation of 
axleymmetrlcal norillnear waves along the jet. 

3* l Equations (3.9) can be used to investigate various phenomena arising 
In jet theory. Spealflcally, It is possible to lnve tlgate the stability of 
jets with respect to long perturbations. Plateau t6 if was apparently the 
first to note that surface tension forces may be the cause of jet lnstablllty. 
A similar study of this matter was performed by Reley [71, who showed that 
the cyllndrlcal shape of a jet la unatableSwith respect to sufficiently long 
perturbations. This fact follow8 from syetem (3.9). 

Weset a=V,+b and ,F-l+n and llnearlze system (3.9), retaiting 
in It all derivatives up to the second order, 

rlt = ‘lrb,, - Vn,, b, + 2b,V - y (-q + qzz) = 0 (3.20) 

Let UB attempt to find a solution of the runnlng wave type. To do this 
ue set 

(3.11) 

For detea A and 3 we have Equations 

A @ -t iVw) -t- ~/*~~3 = 0, Ay (1 + 02) + B (p + ZioV) = 0 (3.12) 

We note that if y I 0 , I.e. If there is no surface tension, the second 
equation of (3.12) Immediately yields w - - 2t(pV , I.e. the jet 1s in neu- 
tral equlllbrlum ln the absence of surface tenalon foroes. If surface ten- 
sion forces are added, the jet becomea unstable. In Pact, the characteristic 
equation of system (3.12) ia of the form 

V2 -!- 3ioVj* + A (A = --l/& (1 i- oB) < 0) (3.13) 

This Inmediately lmplierr that one of the roots of (3.14) has a positive 
thin jet Is disrupted by surface tenalon forces. I&e- 
, we CM trace the process of disintegration of the jet 
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Into drops. The above theory Is valld only for long perturbations. The 
trivial form of a let of welahtless fluid acted upon by surface tension for- 
ces Is therefore u&table. Eowever, as we see frbm the preceding Section, 
other forms of axlsymmetrlcal jets are possible. In particular, these may 
be wave-shaped. This naturally leads us to ask whether stable flows might 
exist among the possible forms of Jet flows. 

In the preparation of this paper the author used to advantage a number of 
comments by L.N. Sretenskll and F.L. Chernous'ko, to whom he Is sincerely 
grateful. 
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